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 Abstract  1 

Landslide event inventories are a vital resource for landslide susceptibility and forecasting 2 

applications. However, landslide inventories can vary in accuracy, availability, and timeliness as 3 

a result of varying detection methods, reporting, and data availability. This study presents an 4 

approach to use publicly available satellite data and open source software to automate a landslide 5 

detection process called the Sudden Landslide Identification Product (SLIP). SLIP utilizes optical 6 

data from the Landsat 8 OLI sensor, elevation data from the Shuttle Radar Topography Mission 7 

(SRTM), and precipitation data from the Global Precipitation Measurement (GPM) mission to 8 

create a reproducible and spatially customizable landslide identification product. The SLIP 9 

software applies change detection algorithms to identify areas of new bare-earth exposures that 10 

may be landslide events. The study also presents a precipitation monitoring tool that runs alongside 11 

SLIP called the Detecting Real-time Increased Precipitation (DRIP) model that helps identify the 12 

timing of potential landslide events detected by SLIP. Using SLIP and DRIP together, landslide 13 

detection is improved by reducing problems related to accuracy, availability, and timeliness that 14 

are prevalent in the state-of-the-art of landslide detection. A case study and validation exercise was 15 

performed in Nepal for images acquired between 2014 and 2015. Preliminary validation results 16 

suggest 56% model accuracy, with errors of commission often resulting from newly cleared 17 

agricultural areas. These results suggest that SLIP is an important first attempt in an automated 18 

framework that can be used for medium resolution regional landslide detection, although it requires 19 

refinement before being fully realized as an operational tool.   20 

Keywords: Remote Sensing, Landslides, Automation, Classification, Disasters 21 

 22 
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1. Introduction  23 

  24 

 Landslide inventories are critical for creating and evaluating susceptibility maps, determining 25 

relationships between landslide occurrences and triggering events, and informing emerging 26 

prediction techniques (Kirschbaum et al., 2009). However, the availability, accuracy, extent, and 27 

applicability of landslide inventories can vary widely depending on the location, compilation 28 

methodology, and distribution. As a result, landslide inventories suffer from underreporting at both 29 

regional and global scales (Petley et al., 2007; Castellanos Abella and van Westen, 2007; 30 

Kirschbaum, 2015). Significant gaps in available landslide information additionally contribute to 31 

the shortcomings of landslide inventories due to the lack of routine global monitoring or cataloging 32 

systems, such as is available for hurricanes and earthquakes (Kirschbaum, 2009).   33 

  34 

There are several standard approaches for generating landslide inventories. Some catalogs are 35 

generated from news reports, other media, and personal communication (Petley et al. 2012; 36 

Kirschbaum et al. 2010, 2015). While these inventories provide global coverage of landslide 37 

activity with dates of occurrence, the reliance on media reports can result in uneven spatial and 38 

temporal accuracy due to reporting biases and underreporting in more remote areas. Another 39 

challenge to reporting is that landslides that occur secondary to primary disasters like hurricanes 40 

or flooding frequently go unreported since impacts are often reported with the primary disaster 41 

(Guzzetti, 2000). Event or regional inventories use field surveys, aerial photography, airborne 42 

Light Detection and Ranging (LIDAR), or other high-resolution satellite data to map landslides 43 

(Brardinoni et al. 2003, Schulz 2004, Xu et al. 2014). While these methods can accurately delineate 44 
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landslide events and extent across a study region, in many of these inventories, there is little 45 

information on the timing of these events, which can impede the applicability of this data for use 46 

in dynamic modeling studies. Additionally, landslide detection using high resolution imagery and 47 

DEMs method can hampered by the availability of or access to data, particularly if imagery needs 48 

to be purchased from a commercial vendor. Both of these approaches rely on manual digitization 49 

and mapping, which is extremely time consuming and is prone to user error.   50 

  51 

Publically available remote sensing data present a practical method to supplement existing 52 

landslide inventories with spatial and temporal information across large regions. Visual image 53 

interpretation (Speight, 1977; Rib and Liang, 1978); computational analysis of passive optical 54 

imagery (Landsat, high-resolution commercial imagery); and computational analysis techniques 55 

leveraging synthetic aperture radar (SAR) data (Guzzetti et al. 2012, Behling et al 2016) have all 56 

been used successfully for landslide identification.   57 

  58 

Visual image interpretation has become more common with the growing availability of high 59 

resolution imagery and open source software but is subjective, resource intensive, and time 60 

consuming due to manual digitization and interpretation. Furthermore, the timing of landslide 61 

events is often imprecise with this method. Multispectral image analysis is a popular technique in 62 

landslide detection (Cheng et al., 2004; Nichol and Wong, 2005; Martha et al. 2016) due to (i) 63 

additional spectral information content of multispectral imagery, (ii) accessibility and free cost of 64 

many multispectral sensors (USGS LDAAP, 2016), and (iii) the opportunity for automation to 65 
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reduce human inputs and errors. These techniques can limit reporting biases and reduce the time 66 

and resources required for event detection (Guzzetti et al., 2012). Spectral landslide detection using 67 

multispectral satellite imagery platforms has been demonstrated by a number of studies (Lee and 68 

Lee, 2006; Weirich and Blesius, 2007; Martha et al 2010l Li et al 2014). Semi-automated, high 69 

resolution change detection methods for landslide identification have also been explored 70 

previously (Hölbling et al., 2015). In contrast with methods requiring the visible range of the 71 

electromagnetic spectrum, Interferometric Synthetic Aperture Radar (InSAR) detects surface 72 

deformation by using phase differencing and has been an effective technique for landslide 73 

identification (Singhroy et al., 1998; Czuchlewski et al., 2003; Farina et al., 2006; Zhao et al 2012, 74 

Tantianuparp et al. 2013). Other methods using radar coherence measure the correlation of the 75 

heights of locally varying elevations to identify rough texture. Changes in the coherence and 76 

polarimetry will readily pinpoint surface changes. (Plank et al 2016; Casagli et al. 2017; Modini 77 

2017) While these are incredibly useful features for landslide identification, radar data can be 78 

expensive and is typically not as readily available as shorter wavelength multispectral imagery, 79 

rendering this method resource intensive and subject to data availability.   80 

  81 

The present study focused on the utilization of multispectral image analysis techniques in order to 82 

automate the identification and feature extraction of landslides and changes in bare earth. The 83 

motivations for this research are to provide a fast and free method to support analyst work in 84 

updating or complementing landslide inventories, and providing a 'first guess' of where landslides 85 

may occur without the use of proprietary data or image classification software. Nepal was chosen 86 

as a case study due to the prevalence of landslide hazards in the region as well as the availability 87 
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of validation datasets. Nepal and the Greater Himalayan region (Figure 1) are highly susceptible 88 

to landslides due to mountainous topography, active seismicity, and strong seasonal monsoon 89 

rains. The region experiences hundreds to thousands of annual fatalities and millions of dollars in 90 

losses annually due to landslide events (Dahal and Hasegawa, 2008, Petley 2007). As a result, this 91 

region would significantly benefit from additional, publically available landslide inventories that 92 

can be used to improve susceptibility and hazard mapping as well as to support disaster response 93 

following a major triggering event.  94 

  95 

--FIGURE 1 HERE--  96 

  97 

This study presents a two sided approach to landslide detection using imagery to identify extent, 98 

and precipitation data to identify the timing of the landslide. Using Landsat 8 imagery (USGS 99 

EROS 2016) and infrastructure from the Open Science Data Cloud (Stevens et al., 2012), a system 100 

was developed to test the feasibility of automated landslide detection using spectral band analysis 101 

and ancillary data. The Sudden Landslide Identification Product (SLIP) takes advantage of spectral 102 

properties of vegetation, slope, land cover type and soil moisture in bi-weekly (16-day) time steps 103 

to identify new areas of bare earth exposure that may represent landslide events. To identify the 104 

likely timing of potential landslide events, the Detecting Real-time Increased Precipitation (DRIP) 105 

model leverages NASA’s Global Precipitation Measurement (GPM) precipitation data to provide 106 

a more precise temporal window of occurrence for each potential event. Section 2 reviews the 107 

SLIP and DRIP model methodologies, data sources used, and validation procedures. Section 3 108 
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outlines the results and discussion of the model impact and applicability. Section 4 provides a 109 

conclusion with ideas of future research.  110 

 111 

2. Data and Methodology  112 

  113 

The Sudden Landslide Identification Product (SLIP) was developed to test the feasibility of 114 

automating landslide detection using open source imagery and without the use of proprietary 115 

classification software. As a predominant triggering mechanism for landslides is rainfall (Petley et 116 

al. 2005), this study also explored the development of precipitation monitoring tools running 117 

alongside SLIP to gain insight on local precipitation thresholds necessary for landslides to occur.  118 

The python scripts for SLIP and DRIP are available at 119 

https://github.com/NASADEVELOP/DRIP-SLIP.   120 

2.1 Data  121 

SLIP combines multiple visible and infrared channels from publically available satellite platforms 122 

to approximate visible landscape changes. Topographic slope and soil moisture are also considered 123 

to constrain the locations of potential change. Landsat 8 provides updated reflectance data at 30-124 

meter spatial resolution every 16 days with 5 bandwidths in the visual spectrum and 6 bandwidths 125 

in the infrared spectrum. Spectral bands from the red, near-infrared, and short wave infrared were 126 

used in this study to identify potential landslide scars automatically.  127 

  128 

https://github.com/NASA-DEVELOP/DRIP-SLIP
https://github.com/NASA-DEVELOP/DRIP-SLIP
https://github.com/NASA-DEVELOP/DRIP-SLIP
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The slope is calculated from a Digital Elevation Model (DEM) and low slopes are masked out in 129 

a method described in 2.2. to limit errors of commission in flat areas where landslides are unlikely 130 

such as riverbeds, which may have similar red reflectance and moisture characteristics. The DEM 131 

was created by filling in remaining voids from the Void Filled 30m resolution Shuttle Radar 132 

Topography Mission (SRTM) DEM (USGS SRTM 2001) with the Advanced Spaceborne Thermal 133 

Emission and Reflection Radiometer (ASTER) DEM (NASA, METI, LP DAAC 2015). The 134 

transition between the ASTER and the SRTM data regions were smoothed by first aggregating the 135 

spatial resolution to 90 meters, and then to downsample the resolution back to 30 meters using 136 

bilinear resampling. This produces a smoother transition between DEMs as was done in Gallant 137 

(2011) Robinson et al (2014).  138 

A 500-meter land cover map from the International Geosphere-Biosphere Programme (IGBP) 139 

derived from the MODIS sensor (LP DAAC MCD12Q1, 2012) was used as a mask to eliminate 140 

agriculture and urban areas that often experience similar changes in soil moisture and vegetation 141 

to that of a landslide.  As a reflection of the 500 meter spatial resolution from IGBP, it is expected 142 

that the masked out areas may be overestimated in some regions compared with the 30 meter 143 

datasets. 144 

2.2 The Sudden Landslide Identification Product (SLIP) Algorithm  145 

  146 

SLIP inspects reflectance values and identifies significant changes using four thresholds: i) 147 

reflectance increases in the red wavelength band 4 (655 nm), which may indicate bare earth 148 

exposure; ii) changes in the SWIR bands 5 and 7 (860nm and 2,200 nm), which indicates changes 149 



9  

  

in soil moisture; and iii) steep slopes identified by a digital elevation model (DEM), which limits 150 

identifications to steep topography; and finally iv) a land cover mask is applied to limit errors of 151 

commission in known agricultural areas.  Using the Landsat data, 'percent red change' is calculated 152 

from a difference between dates in the bands at 655nm. The most recent date is the 'current' image 153 

which has clouds flagged as no data. The 'composite' image is a cloud-free composite of previous 154 

dates of imagery to ensure as much of the scene can be analyzed and not ignored due to current or 155 

historical cloud cover. 156 

  157 

Changes in the red band are calculated using the equation:   158 

  159 

(1)          160 

% 𝑅𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 =  (
𝑅655𝑛𝑚𝐶𝑢𝑟𝑟𝑒𝑛𝑡  − 𝑅655𝑛𝑚𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

𝑅655𝑛𝑚𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
)  ∗  100 161 

 162 

Equation 1 is applied to each pixel in the latest Landsat scene. Areas that show at least 40% increase 163 

in red reflectance were flagged and marked “1” while all other pixels are marked “0”.  164 

  165 

SLIP was calibrated from spectral analysis of several landslide events in Nepal by visually 166 

identifying landslides and inspecting pixel values for those slides. Analysis of the multispectral 167 

Landsat data suggested that increases in red wavelengths (Band 4: 640 – 670 nm) best captured 168 
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the spectral characteristics of landslides and bare earth exposure in mountainous and forested 169 

terrains. However, many landslides are much smaller than this in areal extent, no more than 10 170 

Landsat pixels, depending on the shape of the landslide. Therefore, the SLIP model is limited in 171 

its ability to detect small landslides.   172 

  173 

Vegetation and soil moisture have been estimated using a variety of spectral indices such as  174 

Normalized Difference Water Index (NDWI) (Gao 1996), and the Normalized Multi-band Drought 175 

Index (NMDI) (Wang & Qu 2007). These indices are effective for measuring drought and flood 176 

conditions and their corresponding effects on vegetation. NMDI is sensitive to soil moisture as 177 

well as vegetation, making it an ideal means to measure soil moisture changes over time in areas 178 

of sparse vegetation or bare earth, in addition to vegetated areas. As NMDI was created for 179 

Moderate Resolution Imaging Spectroradiometer (MODIS) specifications, a modified NMDI 180 

variable (mNMDI) was created for this study, focusing on similar sensitivities of infrared and 181 

short-wave infrared bands on the Landsat sensor.   182 

  183 

The Normalized Multi-band Drought Index (for MODIS) is expressed by:  184 

 (2)  185 

𝑁𝑀𝐷𝐼 =  
𝑅860𝑛𝑚 −  (𝑅1640𝑛𝑚 −  𝑅2130𝑛𝑚)

 𝑅860𝑛𝑚 +  (𝑅1640𝑛𝑚 −  𝑅2130𝑛𝑚)
 186 

 187 
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The modified version omits the MODIS 1640 nm short-wave, as the closest band on Landsat 8 is 188 

1610 nm (band 6) demonstrated poor performance for this task. The modified version is as follows 189 

using Landsat 8, bands 5 and 7 as 860 nm and 2200 nm respectively:    190 

(3)        191 

𝑚𝑁𝑀𝐷𝐼 =
𝑅860𝑛𝑚 − 𝑅2200𝑛𝑚

𝑅860𝑛𝑚 + 𝑅2200𝑛𝑚
 192 

  193 

Values between -0.2 and 0.2 show higher moisture content, which is clear to see particularly along 194 

water bodies. Using the Spectral Characteristics Viewer from USGS 195 

(https://landsat.usgs.gov/spectral-characteristics-viewer), the formula can be applied and 196 

compared between lawn grass, dry grass, clear water, and rocks/soils. The mNMDI values for lawn 197 

grass is 0.5, dry grass is 0.3, clear water is 0, and rocks and dry soils is -0.3. Mixtures of soils, 198 

vegetation and water center on 0 with more negative values likely being due to a higher soil 199 

mixture, and more positive value being due to a higher vegetation mixture. Variations of these 200 

mixtures are likely where fresh soils have been revealed turning over the previous vegetation 201 

during landslide events.    The change detection algorithm delineates regions of high moisture and 202 

assigns the region a value of 1, values outside the region are 0. Table 1 shows how the biweekly, 203 

newest composite, called ‘today’, compares with the previous data called ‘historic’, with three 204 

possible outcomes.   205 

  206 

--TABLE 1 HERE--  207 
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Landslide studies using DEMs often use slope thresholds to eliminate errors of commission 208 

(Jimenez-Peralvarez et al 2011). The thresholds and intervals can vary by region, study focus, and 209 

DEM resolution. In this model, slope intervals were used to categorize slopes as gentle (0-20°), 210 

fairly steep (20-35°), steep (35-45) very steep (45-60°), and extremely steep (60-90°). The 211 

distribution is summarized in Figure 2 for Nepal based on the total area in each category from the 212 

DEM 30m pixels. A slope value of 20 degrees was used as a minimum threshold for potential 213 

landslide initiation points as gentle slopes are less likely to have sudden landslide events.  Slope 214 

classification values were assigned to each bin to include relative slope information in the final 215 

landslide detection, shown in figure 2.   216 

  217 

--FIGURE 2 HERE--  218 

  219 

Values for each flagged pixel (0 - 1) are summed across the 3 layers (red reflectance, soil moisture, 220 

and slope threshold) to create a raster image with values 0 - 3. The reflectance and soil moisture 221 

criteria are assigned a value of 0 or 1, while values for slope are binned into one of five slope 222 

classifications (0.2, 0.4, 0.6, 0.8, and 1) as summarized in Figure 2. Values less than 1 denote that 223 

no criteria were met, while values 1 - 2 indicate that at least one criteria was met, and values 2 – 3 224 

indicate that both red reflectance and soil moisture criteria were met. Slopes over 20 degrees are 225 

assigned a classification of “0.4”, and slope pixel values greater than or equal to 0.4 are marked as 226 

potential landslide initiation areas when combined with reflectance and moisture flags. Total 227 

values of 2.4 and above are interpreted as ‘red looking’ areas of increased moisture on a high 228 
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gradient. An example of this is shown in detail in Figure 3 as the landslide scar shows changes in 229 

moisture from the recent rainfall event but no reflectance changes, the newly revealed soil from 230 

the landslide shows changes in both reflectance and moisture.  The third part of the image 231 

demonstrates the red reflectance and moisture changes between the first two Landsat scenes. 232 

--FIGURE 3 HERE--  233 

  234 

After the thresholding was complete, the International Geosphere-Biosphere Programme (IGBP) 235 

MODIS 500 meter land cover map (LP DAAC MCD12Q1, 2012) was used as a mask to eliminate 236 

agriculture and urban areas that often experience similar changes in soil moisture and vegetation. 237 

All pixels that fall within agriculture or urban areas are excluded from the final SLIP output due 238 

to frequent erroneous detections by the algorithm.   239 

  240 

Updated maps of landslide detections are automatically generated for each tile every 16 days and 241 

are saved in a GeoTIFF format. As the file names contain the date and Landsat tile location by 242 

path/row, users are able to examine any detection that has been made over a particular area by 243 

examining the product file names.  244 

2.3 The Detecting Real Time Increased Precipitation (DRIP) Algorithm   245 

While SLIP identifies potential landslides at 30-meter resolution, the identification is limited by 246 

the temporal resolution of the Landsat sensor and the pervasiveness of cloud cover in the study 247 
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region. Detections can be as frequent as the day the Landsat image was acquired, if the area is 248 

cloud-free, but can be limited by up to 3 months during periods of extensive cloud cover, requiring 249 

many composited images. If we assume that the SLIP landslide detections are triggered by rainfall 250 

and that the peak precipitation during the 16-day temporal window between overpasses coincides 251 

with landslide occurrence, landslide detections can be identified in finer temporal windows by 252 

monitoring continuous precipitation accumulations in the 16-day period between detections from 253 

SLIP.  254 

The Detecting Real-time Increased Precipitation (DRIP) tool was developed (Figure 4) to provide 255 

suggested dates to correspond to the SLIP landslide detections. Another advantage of DRIP is that 256 

it helps to identify extreme rainfall in near-real time and suggest where potential images may be 257 

located as seen in figure 4.   258 

There have been several research efforts to quantify rainfall thresholds for landslide triggering in 259 

the study region (Dahal and Hasegawa, 2008, Froehlich et al 1993). In particular, Froehlich (1990) 260 

established that in the Himalayan region, small slides and flows can be triggered by between 130-261 

150mm of accumulated rainfall in a 24-hour period, and 180-200mm accumulation in 72 hours. 262 

For larger slide events, landslides may be triggered only after exceeding 250 and 350mm of rainfall 263 

in a 24 and 72-hour period, respectively. In subsequent research, Dahal (2008) identified that 264 

144mm rainfall accumulation in a 24-hour period substantially increased the risk of landslides. 265 

While both of these studies were undertaken using gauge, not satellite data, they do provide a 266 

baseline for considering potential triggering thresholds in this region.  A study of satellite 267 

precipitation products from GPM's predecessor, the Tropical Precipitation Measurement Mission 268 



15  

  

(TRMM) reveal that orographic precipitation may be underestimated by 5-14 mm (Hashemi et al 269 

2017). As GPM uses some of the same satellites as TRMM in the multi-satellite merged product, 270 

it is expected that GPM and TRMM will have similar biases. To use the GPM data in this analysis, 271 

we present lower thresholds than were established in the gauge studies. 272 

  273 

--FIGURE 4 HERE--  274 

  275 

To associate the intense rainfall events to probable landslides, satellite precipitation data is 276 

gathered in near real-time from the Global Precipitation Measurement mission Integrated 277 

Multisatellite Retrievals for GPM (IMERG) Early product (Huffman et al 2015), which is available 278 

in half-hourly time steps and 0.1 degree spatial resolution with a latency of 4 hours. DRIP collects 279 

the half-hourly IMERG data in a moving 16-day window to accommodate the SLIP output, and 280 

constructs rainfall accumulations in 24, 48, and 72-hour moving windows within the 16-day span, 281 

using threshold values of 145mm, 170mm, and 195mm respectively.  282 

To suggest the landslide event date within the 16-day window, DRIP selects the 24, 48, and 72-283 

hour data that exceed the established rainfall thresholds. When there are multiple dates that exceed 284 

the rainfall threshold, the largest rainfall event is chosen. While it is uncertain which of the major 285 

storms contributed to the landslide, it is likely that the landslide may be associated with the passage 286 

of the storm, either during or after the event. Similarly, where the 24-hour thresholds are met, the 287 
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additional 48 and 72-hour thresholds are not considered, even if the threshold is reached for the 288 

longer duration.   289 

The pixels with the precipitation values exceeding the thresholds from the 24, 48, and 72-hour 290 

windows are combined into one product, with a separate raster data layer containing metadata of 291 

the original dates that contributed to the combined product.  To use the DRIP outputs with SLIP, 292 

the combined thresholds are given a flag of “2” in a similar manner to the three SLIP flags. The 293 

coordinates of each pixel extent are used to assign the additional DRIP flag to the SLIP output, as 294 

the spatial resolution of the GPM precipitation is much coarser than the Landsat SLIP product.   295 

When the “2” flag is added to the SLIP product, SLIP-DRIP total values above 4 have  296 

corresponding precipitation values exceeding the DRIP threshold, and will have specified dates 297 

and times for the extreme rainfall that may suggest a trigger for the potential landslide(s). This 298 

process can offer insight into the potential timing of the landslides detected as well as on regional 299 

precipitation thresholds that may result in slope failures.  300 

2.4 Automation and Preprocessing  301 

  302 

SLIP and DRIP require the open source libraries NumPy (http://numpy.org) for processing raster 303 

arrays and GDAL (http://gdal.org) for reading, writing, and archiving geospatial data. The SLIP 304 

program preprocesses Landsat 8 data before performing change detection analyses and uses an 305 

external program to download Landsat 8 data (Hagolle et al., 2016). The workflow for all the SLIP 306 

and DRIP components can be found in Figure 5. The SLIP and DRIP documentation 307 

http://numpy.org/
http://gdal.org/
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(https://github.com/NASA-DEVELOP/DRIP-SLIP) details the list of package dependencies, as 308 

well as installation instructions. The SLIP and DRIP algorithms were tested using a server hosted 309 

by the Open Science Data Consortium (Stevens et al., 2012).  310 

  311 

FIGURE 5: 312 

2.4.1 SLIP Automation  313 

  314 

The SLIP program can download new Landsat 8 scenes from USGS Earth Explorer  315 

(www.usgs.earthexplorer.com, USGS LP DAAC 2016) each day as scenes are made available. 316 

When a new Landsat scene is available in the study area, the program proceeds to the preprocessing 317 

and change detection stages. The Landsat 8 satellite captures images of the Nepal and Himalayan 318 

region every 16 days at 30-meter resolution. For this application, SLIP downloads Landsat scenes 319 

(Paths 139-144; Rows 39-41) as they become available.   320 

  321 

When each new scene is downloaded, the red band (band 4: 655 nm), short-wave infrared (SWIR 322 

band 7: 2,200 nm), near infrared (NIR band 5: 860 nm), panchromatic band 8, and quality 323 

assurance (QA) bands are extracted and stored in a temporary directory. Each Landsat tile in the 324 

study region has a local repository of the previous 10 scenes at that tile. To address issues of 325 

persistent cloud cover, compositing tasks mask out cloud pixels, replacing missing data with data 326 

from the previous 10 scenes to maximize cloud free observations. Cloud identification procedures 327 

mask pixels based on the Landsat 8 QA band and a 96% reflectance threshold in the panchromatic 328 

https://github.com/NASA-DEVELOP/DRIP-SLIP
http://www.usgs.earthexplorer.com/
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band. All pixels flagged as clouds are replaced with corresponding cloud free pixels from the 329 

previous scenes, beginning with the most recent. This process iterates until either all pixels in the 330 

current scene are cloud-free, or all 10 scenes have been used in the backfill. The newest image is 331 

then compared to the composited image.   332 

2.4.2 DRIP Automation   333 

The DRIP program downloads the GPM IMERG data in near real-time through the NASA 334 

Precipitation Processing System (PPS) FTP server (ftp://jsimpson.pps.eosdis.nasa.gov/). The 335 

processing latency for the half-hourly GPM IMERG dataset is approximately 4-6 hours from 336 

observation. This data is an ‘early run’ initial processing of the data without gauge calibration 337 

(Huffman et al 2015) and is not considered ‘research grade’, which are produced more than a 338 

month after the satellite observation. For the near real-time application of landslide identification 339 

and dating, it is deemed more important to have a more rapid intake of available precipitation data 340 

as it is available.   341 

The FTP server provides the GPM data on a global grid in HDF file format. As data is made 342 

available, it is downloaded, subset to the region as a GeoTIFF file, and accumulations are created 343 

for the 24, 48, and 72-hour moving windows. Because intense short duration precipitation is more 344 

likely to cause landslides in this region compared to lower intensity longer duration accumulations 345 

(Froehlich et al 1990, 1993; Dahal et al 2008; Petley 2010), the 24-hour accumulation carries more 346 

significance than the 48 and 72-hour accumulations. The python script uses this priority to create 347 

a set of three raster images for the 16-day period matching the Landsat SLIP output. The first 348 

image represents points where the rainfall thresholds have been triggered with the triggering 349 

ftp://jsimpson.pps.eosdis.nasa.gov/
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values, the second ‘image’ contains the date as a pixel value, and the third raster is the triggering 350 

flag that works directly with the SLIP outputs.   351 

3. Validation   352 

  353 

The SLIP model outputs were validated to assess SLIP’s landslide identification capabilities on a 354 

regional scale within Nepal. Two SLIP detection raster maps were selected for five Landsat tiles 355 

covering Nepal (Figure 6). For each tile, one raster falling during the monsoon season (June 356 

through September) and another raster falling outside of the monsoon season (October through 357 

May) were selected for validation. In total, 10 dates were selected for validation.  358 

  359 

--FIGURE 6 HERE—  360 

  361 

To prepare the SLIP data for validation, SLIP detection images were masked to only retain pixels 362 

with values greater than 2.4, representing areas that exceeded the three previously mentioned 363 

thresholds and areas that met the land cover condition. Using GIS software, each raster was 364 

converted to a polygon. A 60-meter buffer was then applied to each polygon to cluster discrete 365 

polygons into larger landslide events. This technique ensures that neighboring detected pixels with 366 

a small gap in detection will be considered to be the same landslide event. As there may be 367 

hundreds of landslide detections that fit the criteria than can be efficiently validated manually, a 368 
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sample of 10% of the landslide detections were extracted from each of the 10 buffered shapefiles 369 

for validation.  370 

  371 

The landslide event polygons were validated using a Google Earth scene following the date of the 372 

detection. Google Earth Pro (desktop) was used to reference the landslides by inputting the 373 

coordinates of the potential landslides into the search and modifying the time slider to match a 374 

time near the estimated landslide event.  Two analysts visually assessed each of the landslide event 375 

polygons independently and assigned them to an appropriate classification category. The 9 376 

classification categories assigned for an event included: Landslide occurring in a Forest or as a 377 

result of Glacier Melt, and No Landside as Terrace, Barren, Agriculture, Mountainside/No 378 

Vegetation Change, Riverbed, and Urban, as well as Unidentifiable if the surface could not be 379 

clearly seen from the Google Earth reference imagery. If a SLIP event was classified as a 380 

Landslide, the event was assigned a value of one representing a positive landslide detection, No  381 

Landslide was assigned a value of zero representing a false positive landslide detection, and 382 

Unidentifiable was also assigned a value of zero due to the inability to positively identify a 383 

landslide. The non-landslide classifications help to quantify deficiencies in the algorithm, 384 

particularly, where there are high errors of commission for a certain type of ‘non-landslide’.   385 

  386 

A confidence rating was assigned to each SLIP event detection based on the combined assessment 387 

of the analysts. A rating of ‘high confidence’ was given to detections where both reviewers agreed 388 

that a positive detection occurred, a rating of ‘low confidence’ was given to detections where only 389 
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one of the two reviewers believed that a positive detection occurred, and a rating of ‘no confidence’ 390 

was given to the detections where both reviewers agreed that the detection was a false detection.  391 

  392 

  393 

4. Results and Discussion  394 

  395 

The SLIP model outputs were validated using 15-meter resolution or higher in Google Earth 396 

imagery to assess landslide identification capabilities on a regional scale within Nepal (Figure 7).  397 

The SLIP classification results are displayed in Table 2. In the 10 validation scenes, SLIP detected  398 

“High Confidence” landslides with accuracies ranging from 12% to 56%. The average “High 399 

Confidence” accuracy over Nepal is 27%. When “Low Confidence” landslides are included in the 400 

assessment, detection accuracies increase significantly, ranging from 32% to 83%. This averages 401 

out to an overall accuracy of 56% for “combined detection” over the entire region.  402 

  403 

--FIGURE 7 HERE--   404 

  405 

Multiple regional characteristics could influence inconsistencies in results among tiles. The SLIP 406 

algorithm is designed to detect areas that experience changes in vegetation and soil moisture which 407 
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exceed a certain slope threshold. Because Nepal is predominantly mountainous, agricultural and 408 

terraced areas commonly experience soil moisture changes due to irrigation and vegetation 409 

changes due to harvesting. These areas are often found on slopes exceeding the current SLIP 410 

threshold. The land cover classification criterion was added to the product to eliminate false 411 

positive detections in urban and agricultural areas, but due to the coarse resolution of publicly 412 

available land cover maps, agriculture-related false detections persist. The tiles that fall within the 413 

agricultural region of Nepal (path/row 144/40 and 141/41 are highlighted in Table 2) have much 414 

lower combined landslide confidence accuracies than other tiles covering mountainous regions 415 

and uninhabited regions of Nepal. The agricultural tiles have combined landslide confidence 416 

accuracies ranging from 29-58% while mountainous tiles have accuracies ranging from 54-83%.  417 

  418 

--TABLE 2 HERE—  419 

  420 

Errors of commission can also result from unmasked clouds that may match the soil and brightness 421 

criteria of SLIP. Though cloud masking and buffering techniques are included in the model, some 422 

clouds can be difficult to distinguish from the land surface, particularly in areas of snow-capped 423 

mountains. Future advances in cloud masking algorithms and the incorporation of thermal imagery 424 

could serve to enhance the cloud mask and further reduce errors of commission.  425 

  426 
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SLIP was also analyzed to detect performance variations due to seasonality. Over the five tiles 427 

analyzed during validation, four of the five tiles showed 4 to 14% increase in high confidence 428 

landslide detection performance during the monsoon season (Table 2). When used without DRIP, 429 

SLIP is likely to perform better during the monsoon season due to rainfall-induced landslide 430 

occurrence, as extreme rainfall events are the primary driver of landslide occurrences in the 431 

country. Combining DRIP with SLIP has the potential to decrease the number of false detections 432 

during the monsoon and dry seasons.   433 

  434 

Because the dates are not precisely defined in the imagery alone, existing landslide databases such 435 

as the Global Landslide Catalog (GLC) (Kirschbaum et al 2010), International Disaster Database 436 

(Sapir and Mission 1992), and the Durham Fatal Landslide Database (Petley 2012) can be used to 437 

validate DRIP. To this end, the DRIP validation requires dates to be associated with each landslide 438 

event, with a preference given to event entries with precise times. However, because of reporting 439 

biases affecting the dates and times in existing inventories, a more constricted catalog with a 440 

minimal date based biases will be compiled for Nepal from the previously mentioned sources as 441 

well as additional sources. The new compilation database is currently in progress and is not 442 

available for validation of the current work, but it will be discussed in the validation of future 443 

improvements to the SLIP and DRIP algorithms. Using a more comprehensive database will allow 444 

more rigorous analysis using inventories. Once complete, the DRIP time series for each pixel 445 

surrounding the respective landslide event will be used to estimate the date and time of the 446 

landslide. The estimated time from DRIP can then be compared with the actual time from the 447 

reported landslide.   448 
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  449 

The DRIP precipitation time series for the Jure Sunkoshi Landslide featured in Figure 3 is shown 450 

in Figure 8 and highlights the intense precipitation in the hours leading up to the event. The rainfall 451 

events leading up to the slide were spread out as major storms every few days, culminating in one 452 

rainfall event with 38mm of rain falling in one hour. This is significantly higher precipitation 453 

compared to the average 2mm per hour for the pixel.   454 

  455 

--FIGURE 8 HERE--  456 

  457 

Limitations of the proposed methodology stem from calibration and sensitivity of the spectral 458 

bands used within the SLIP algorithm as well as limitations of the validation datasets. Data from 459 

previous Landsat satellites were evaluated to determine if these data can be used to construct a 460 

longer record. However, analysis of Landsat 7 and 5 indicated that the bands used in these satellites 461 

diverged too much from those available from Landsat 8. The sensitivity of the algorithm has been 462 

developed to function with characteristics that are common globally but has so far only been tested 463 

in the Nepal region. Calibration for SLIP was performed for a small group of landslides in Nepal, 464 

and therefore is limited by the quality and availability of the catalog for this region.  Validation of 465 

this model is also subject to uncertainties due to the analysts’ interpretation of landslides within 466 

the area and the availability of imagery within Google Earth. If the algorithm detected a landslide 467 

but there is not sufficient multi-temporal views or look angles from high resolution imagery to 468 

confirm the landslide event, the validation may be biased. Potential differences between analysts’ 469 
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visual classification were addressed by requiring two classifications for each SLIP detection; 470 

however, the limited availability of high resolution imagery. If this model is considered to be used 471 

in other regions, the SLIP model would need to be calibrated and tested with high quality landslide 472 

inventory information due to the presence of different land cover types, terrain, and atmospheric 473 

effects such as trace cloud cover and haze which could not be removed by the Landsat cloud mask 474 

and atmospheric correction.  475 

Lastly, there are issues regarding the high level of false alarms in the current algorithm. As 476 

discussed above, the false alarms can result from physical phenomena such as seasonal vegetation 477 

changes, riverbeds, agricultural lands, and urban areas. Additional false alarms may result from 478 

sensor and algorithm sensitivities such as seasonal brightness changes, cloud and edge artifacts 479 

from the multi-day composite process, and sensor abnormalities (such as scan errors). As a result, 480 

this algorithm still requires manual validation of potential landslide detections before they should 481 

be considered as true landslide point.   482 

    483 

5. Conclusions  484 

  485 

Two automated tools, SLIP and DRIP, have been developed to identify potential location and 486 

timing of newly triggered landslides seen from Landsat 8 imagery using spectral thresholding 487 

algorithms and precipitation data from GPM. These tools have the ability to map new landslide 488 

events and estimate specific dates for the landslide occurrence.   489 
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  490 

The SLIP algorithm demonstrates how publically-available Landsat 8 data can be utilized for 491 

automated and rapid detection of potential landslide events. However, the limitations of the current 492 

system may impact its applicability or transferability across users or regions. The system detects 493 

changes on the surface within areas of high slopes where there is an indication that the ground is 494 

wet. Therefore, the algorithm requires adjustment to the local elevation and slope characteristics 495 

in order to identify the crowns or initiation points that are on regionally different gradients. In 496 

addition, this algorithm may not be sensitive to seismically triggered landslides where moisture is 497 

not a significant cause for the event.  Slow moving creep events that occur on more gradual slopes 498 

and shallow debris flows with narrow widths but long runouts are also less likely to be detected 499 

due to the masking out of more gradually sloping areas, the 30 m spatial resolution of the Landsat 500 

data, and the expectation of a drastic reflectance difference between scenes. The Landsat pixel 501 

resolution also limits the detection of smaller landslides (less than 30-45 meters in width).  502 

  503 

SLIP enables automatic landslide identification with the intention to reduce the amount of time 504 

required to interpret satellite imagery manually. This method covers larger areas and can digest 505 

more imagery compared to supervised classification, which can be useful in the context of research 506 

and situational awareness of potentially impacted areas following a major event. The SLIP 507 

algorithm requires additional refinement to remove errors from the temporal compositing before 508 

it can be fully realized as an operational tool, but is an important first attempt in an automated 509 

operational framework for medium-resolution regional landslide detection. The DRIP algorithm 510 

can be similarly used as a standalone product to aid in the manual identification of major 511 
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precipitation events in near real-time that may cause landslides and flooding events. More testing 512 

of regional suitability and applicability is required before these tools can be implemented for 513 

disaster relief applications.   514 

   515 
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Table Captions List:  656 

1. Table 1: Temporal relationships in soil moisture for the three outcomes for this 657 

indicator. 658 

2. Table 2: Validation results for the sampled SLIP detections. High confidence landslides 659 

are detections in which both reviewers classified an event as a landslide. Low confidence 660 

landslides are detections in which one of the two reviewers classified an event as a 661 

landslide. Tiles with majority agricultural land cover are highlighted and are found to 662 

have a lower overall accuracy. 663 

  664 
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 Figure Captions List  665 

1. Figure 1: The Nepal study area shows dramatic elevation changes from the southern 666 

area bordering India to the northern region bordering China. Landslides from the Global 667 
Landslide Catalog (Kirschbaum et al., 2015) from 2007-2016 are shown in red to 668 
demonstrate the widespread distribution of landslides in the region.    669 

2. Figure 2: Nepal Slope Pixel Frequency derived from SRTM and ASTER DEMs, with 670 
slope classification values used for this study  671 

3. Figure 3: The Jure Sunkoshi Landslide, occurring on August, 2nd, 2014, was used for 672 

calibration and testing in earlier iterations of the SLIP algorithm. Here it is shown prior 673 
to (left) and after (middle) the landslide. The SLIP detection with a Landsat 8 base map is 674 
shown (right) from the same Sept 18th image, with the SLIP pixel detection highlighting 675 
where the soil moisture criteria (yellow) or both red reflectance and soil moisture criteria 676 

(red) are met.   677 
4. Figure 4: DRIP makes rainfall accumulation maps in 24, 48, and 72-hour moving 678 

windows, which can be compared with the 16-day time Landsat 8 image revisit time. The 679 
maps pinpoint regions where rainfall accumulations exceed established thresholds for 680 

rainfall triggered landslides. 681 
5. Figure 5: Workflow showing data processing architecture of SLIP and DRIP.   682 
6. Figure 6: The Landsat tiles used for validation of SLIP. For validation, two SLIP 683 

detections were selected for each tile to represent monsoon (June-October) and dry season 684 
conditions.  685 

7. Figure 7: Example validation Results for each classification category: a.) Forest 686 
Landslide; b.) Glacier Melt Landslide c.) Barren d.) Agriculture e.) Riverbed f.) Urban g.) 687 
Mountainside/No Vegetation Change h.) Terrace. 688 

8. Figure 8:  Half Hourly IMERG Precipitation around Jure Sunkoshi landslide from Sept 689 

25- August 5, 2014. The 24-hour period before the landslide is marked in blue; there is 690 
19.5mm of rainfall in the hour just before the landslide and the second blue line is when 691 
the landslide occurred. (Data is available from giovanni.sci.gsfc.nasa.gov)  692 

  693 
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Tables  694 

   695 

Table 1: Temporal relationships in soil moisture for the three outcomes for this indicator   696 
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  697 

Table 2: Validation results for the sampled SLIP detections. High confidence landslides are 698 

detections in which both reviewers classified an event as a landslide. Low confidence landslides 699 

are detections in which one of the two reviewers classified an event as a landslide. Tiles with 700 

majority agricultural land cover are highlighted and are found to have a lower overall accuracy.   701 
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Figures  702 

  703 

Figure 1: The Nepal study area shows dramatic elevation changes from the southern area 704 

bordering India to the northern region bordering China. Landslides from the Global Landslide 705 

Catalog (Kirschbaum et al., 2015) from 2007-2016 are shown in red to demonstrate the 706 

widespread distribution of landslides in the region.      707 
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 708 

   709 

Figure 2: Nepal Slope Pixel Frequency derived from SRTM and ASTER DEMs, with slope 710 

classification values used for this study.     711 



39  

  

  712 

Figure 3: The Jure Sunkoshi Landslide, occurring on August, 2nd, 2014, was used for calibration 713 

and testing in earlier iterations of the SLIP algorithm. Here it is shown prior to (left) and after 714 

(middle) the landslide. The SLIP detection with a Landsat 8 base map is shown (right) from the 715 

same Sept 18th image, with the SLIP pixel detection highlighting where the soil moisture criteria 716 

(yellow) or both red reflectance and soil moisture criteria (red) are met.   717 
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   718 

Figure 4: DRIP makes rainfall accumulation maps in 24, 48, and 72-hour moving windows, which 719 

can be compared with the 16-day time Landsat 8 image revisit time. The maps pinpoint regions 720 

where rainfall accumulations exceed established thresholds for rainfall triggered landslides.   721 
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   722 

Figure 5. Workflow showing data processing architecture of SLIP and DRIP.    723 
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   724 

Figure 6: The Landsat tiles used for validation of SLIP. For validation, two SLIP detections were 725 

selected for each tile to represent monsoon (June-October) and dry season conditions.   726 
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  727 

Figure 7: Example validation Results for each classification category: a.) Forest Landslide; b.)  728 

Glacier Melt Landslide c.) Barren d.) Agriculture e.) Riverbed f.) Urban g.) Mountainside/No 729 

Vegetation Change h.) Terrace.      730 



44  

  

  731 

Figure 8: Half Hourly IMERG Precipitation around Jure Sunkoshi landslide from Sept 25- August 732 

5, 2014. The 24-hour period before the landslide is marked in blue; there is 19.5mm of rainfall in 733 

the hour just before the landslide and the second blue line is when the landslide occurred. (Data 734 

is available from giovanni.sci.gsfc.nasa.gov)   735 
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